请选择 进入手机版 | 继续访问电脑版

深度学习的兴起,是通用计算的挽歌?------------------3

专用处理器市场过小?

或许有人会说,晶圆厂的这种问题,工艺迭代放缓也会影响到专用处理器。但实际上专用处理器大部分情况下的理想成本选择并非最新制造工艺。而不同的应用本身也正需要不同的工艺,所以上述问题对专用处理器的影响也就小了很多。

这些因素都让专用处理器变得更有吸引力。一般更通用的处理器,在设计时所需的妥协更多。比如在芯片面积方面的权衡:是增加额外的处理器核心用于并行计算,还是增加cache提升存储子系统的性能。毕竟通用处理器要执行各种各样的计算,自然无法针对某种特定的任务做特别的照顾。而专用处理器是量体裁衣,比如做更出色更稳定的并行运算、更少的存储访问需求,以及可能更低的精度。

比如GPU相比CPU,频率通常低得多,但每个时钟周期内以并行的方式就能执行100倍量的计算。所以GPU在重并行运算方面就具备了极大的优势,但处理一些少并行的工作可能就不及CPU了;另外GPU的内存带宽可以达到CPU的10倍,但数据访问延迟却高得多,这样一来GPU的预测计算能力就更强。而专用处理器的另一个特性就是由于量体裁衣,所以更节能,无论对电池驱动的小型IoT设备,还是对大到云计算、数据中心和超算,都是有很大价值的。

不难想象前文提到的专用处理器在更多领域正逐渐开花。不过专用处理器也存在缺陷,典型的就是弹性较差。好比英伟达的GPU,虽然高维矢量运算能力强,在科学和工程领域应用还算多。但实际上绝大部分的软件都是不能跑在GPU上的。而GPU已经算是通用性还稍强的处理器了。而且编程难度高,只有那些经验最丰富、对性能要求很高的程序员才有能力将GPU应用到非图形计算领域。

而专用处理器最大的问题实际也是来自固定成本。对于通用处理器来说,固定成本的摊薄是基于巨大的销量。或许GPU、NPU之类的市场都还比较大,但更多专用处理器仅着力细分市场,市场规模与通用处理器不可同日而语。即便用更早的制造工艺,成本如何控制的问题也仍然存在。这也是过去几十年,专用处理器未能真正大规模兴起的原因。

实际上,某一个种类的专用处理器能否兴起关乎几个因素:相对性能 r(专用处理器性能/通用处理器性能),通用处理器本身的性能提升速度λ,以及专用处理器达到与通用处理器相同成本所需的时间T(这个值是指在出售过程中摊薄成本的时间)。

如果某款专用处理器的固定成本更高,那么它所需摊薄成本达到与通用处理器同一水平所需的时间T也就更久。而客户是否选择专用处理器,除了价格之外还要看专用处理器性能表现如何——以及通用处理器性能提升速度λ是否很快。如前文所述,美国劳工协会的数据为2000-2004年,λ=48%;而2004年λ=29%,2008年λ=8%。符合通用处理器性能提升逐年放缓的趋势。

来源:MIT

上面这张图,横轴表示相对性能r(专用处理器性能/通用处理器性能),纵轴表示处理器出货量。在摩尔定律鼎盛时期,也就是λ=48%的时候,如果说r=100,也就是专用处理器比通用处理器快100倍,则至少需要出货83000个产品,才能让专用处理器在成本效益方面打败通用处理器。如果r=10,也就是双方性能差距10倍,则出货量需要达到16.7万;如果r=2,则出货量需要100万,才能让专用处理器在市场上更有竞争力。这几个出货量值对于细分领域的专用处理器而言都显得过大。

不过考虑到现如今λ已经下滑到了8%,那么r=100时,要求的出货量就能降到15000;r=10时,要求的出货量可降至27000;r=2时,要求的出货量为81000。就这个时间节点来看,某些应用领域的专用处理器就已经可以达到这样的经济效益了,甚至对专用处理器的性能要求也降低了很多。

计算的细分和碎片化

深度学习或者说AI这样的应用场景正越来越普遍。仅企业市场,IDC预计,应用于AI和机器学习的花销预计会从2017年的120亿,达到2021年的576亿——当然这其中也并不单只和半导体相关。其应用场景涵盖了BI(商务智能)与分析市场、数据科学平台等。Deloitte Global认为机器学习IP最快的成长领域就是专用芯片的开发,数据显示数据中心的机器学习芯片,2016年出货量在20万,而2018年就达到了80万。

谷歌TPU板子

前述英伟达专为AI优化的GPU,以及谷歌TPU即是这一场景中的例子。谷歌还在去年的Google I/O大会上宣传了TPU第三代产品,可见是真正尝到甜头的。微软Brainwave加速器采用FPGA的方式,为实时AI设计;Intel则有深度学习inference加速器(位于数据中心加速卡中的FPGA),还有放在USB小型计算设备中的低功耗AI加速器Movidius Compute Stick;更多市场参与者如Graphocore IPU、Tachyum、Wave Computing...单是AI这一领域百花齐放的态势就已经形成了。

而AI只是专用处理器的某一个方向,更多开发者的加入,并且相继让前期投入的企业尝到甜头之后,适配其他算法的新硬件也会相继诞生,专用计算市场持续扩增。那么计算在硬件部分就开始进一步细化了,似乎又返回到计算机刚诞生的那个“专用”时代,一种硬件解决一种问题。

未来市场的应用场景大致分成三类,一类是由于某些原因无法采用专用处理器的类型:比如某些市场本身就非常小,如气候模型这样的小众研究科学,很难利用边际递减的方式把固定成本缩减到合理区间,成本难以摊薄;还有一种情况是某些类型的应用具有特殊性,如数据库——这个市场虽然很大,但数据库计算难以预测,且无法并行,应用专门计算是存在挑战性的。针对这类不能应用专用计算的,唯有继续采用通用计算了。鉴于通用计算整体步调放缓,会进一步减缓这些场景的发展速度,让它们彻底进入慢车道。

第二类是像TPU这样即便通用计算不没落,也一样要发展专用计算的类型——这类型可能是专用计算的最大受益者,但因为其发展和通用计算的兴衰根本上无关,所以很难算在趋势内,即便他们对市场是有贡献的。第三类则是被引导着从通用计算转型到专用计算的类型,这可能是市场发展的真正主体。无论如何这两类都可能会在短期内进入发展的快车道,获得市场最大的红利。

但就长期来看,早前通用计算的良性循环很难在专用计算上持续,无法快速驱动技术革新和成本投入。这样的长期发展可能会延缓半导体新技术的诞生和推广,甚至让创新裹足不前。只不过具体情况大约会更加复杂,这些影响仍然是很值得细究的。


最新评论11

zbrrejtje 2019-7-13 09:11:09 显示全部楼层
小手一抖,钱钱到手!
苇叶 2019-7-13 09:14:52 显示全部楼层
小手一抖,钱钱到手!
mengyi92 2019-7-13 09:17:01 显示全部楼层
小手一抖,钱钱到手!
好好 学习了 确实不错
去死 2019-7-13 09:33:07 显示全部楼层
谢谢楼主,共同发展
caffeine 2019-7-13 09:40:31 显示全部楼层
牛逼 大神 学习一下了 膜拜
沉默 2019-7-13 09:41:20 显示全部楼层
好好 学习了 确实不错
费志辉51 2019-7-13 09:43:52 显示全部楼层
看帖回帖是美德!
牛逼 大神 学习一下了 膜拜
*滑块验证:
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

全国免费热线电话

151-1809-0910

周一至周日9:00-23:00

反馈建议

4530@163.com 在线QQ咨询

扫描二维码关注我们

Copyright © 2008-2018   All Rights Reserved. By 志博PCB手机版小黑屋粤ICP备17015705号-1 百度统计

快速回复 返回顶部 返回列表